
In this lecture, we will go through what you have learned in Lab 4. In particular, I will
explain the limitation of polling as a method of detecting a real-time event. Then I
will explain what and why interrupt is so much better.
Finally I will explain how you can use interrupt with the Pybench board using
Micropython.

The content of this slide was presented to you last year in DE1.3 Electronics 1 module in
Lecture 14 – Drive. I present this here again to refresh your memory.
Since motor coils are essentially inductors, they have low DC impedances (resistance of the
wiring). Hence when driving motors, we need to use special driver chips.
The driver chip you will use in Lab 4 (the TB6612) is often called the H-Bridge Driver. Shown
here is the simplified block diagram. There are four transistors connected to the supply rail
and ground. (It doesn’t matter which is which because the circuit is symmetrical.) The
motor is connected in the middle forming the horizontal link of the H. The transistors are
MOSFETs (metal oxide silicon field effect transistors) which is acting like a voltage controlled
switch. When a ‘1’ or high voltage is applied to the gate control terminal, the transistor
turns ON and conduct electricity. If a ‘0’ or low voltage is applied, the transistor is OFF. So
the top diagram shows a configuration that results in the supply voltage being applied to
the left terminal of the motor. The right terminal of the motor is grounded, and the motor
turns in one direction. Reversing the control to the transistors results in the motor turning
in the other direction.
If you use an AND gate at the control input, you can also add a PWM signal to control the
speed of the motor.
Basically the ‘1’ and ‘0’ control signals are the A0 and A1 signals on the TB6612. The PWM
signal is what you apply to the input of the AND gate.

Now you know how the TB6612 works.

3

Last year, you wired your motors to the TB6612 H-bridge driver chip (the one in
brown colour) yourself. This year, the wirings are all done for you on the Pybench
PCB.
You will also be connecting the Pybench board to a 12V lithium battery via the large
yellow power connectors. The toggle switch turns this ON and OFF.
The motor is connected to the Pybench board via the 6-way ribbon cable. You will
be learning how to drive the motors (again) in Lab 4 on Wednesday.
You will also be using the Bluetooth board (BluFruit UART from Adafruit) to control
the speed of the motor. Here are the pin names on the Pyboard for reference.

Exercise 1 of Lab 4 is just a revision from last year’s Electronic 1 module. If you have
forgotten this, please go back to last year’s lecture on “Drive”.

Here are some interesting questions to ask yourself to check whether you have
learned what is expected of you:
1. Why do you need this driver chip at all? Could you drive the motor directly from

the microprocessor?
2. How are the two pins (IN1 and IN2) used to control the direction of the motor?
3. What is PWM and why is it desirable to use PWM to control the speed of the

motor instead of using analogue voltage level (e.g. from a DAC signal)?
4. What is meant by “Creating a pin object A1” in the Python code?

5. Explain how timer 2 is programmed to produce the PWM signal to drive motor
in the following lines.

6. How should you choose the frequency of the PWM signal to drive the motor?

Next, we use the potentiometer (5kW) to control motor speed and direction. Here
are the questions to test yourself:
1. In Micropython, how do you create an object to perform ADC conversion? Why

in this case, we use pin X11?
2. How do you define and work out the resolution of the ADC converter?
3. Explain the meaning of the statement:

4. Explain the meaning of the format statement in Python:

Next, we use the Hall Effect Sensors (two) on the motor to determine the speed of
the motor and direction of the motor. The questions to ask yourself are:

1. Refer to the sensor output signals, what happens when you increase the motor
speed?

2. How would the two sensor signals differ when you change the direction of
rotation in the motor?

3. Given the waveform of the two signals (Channel A and B) from the sensors, the
relative phase is always ±p/2. Why?

4. Given the circular magnet has 13 pole pairs, and that the gear of the motor has
a 1:30 reduction ratio, how can you derive the speed of motor (in revolutions
per second) from the number of rising edges E in a period T? (answer: 390
pulses per revolution. Therefore speed of motor is:

motor_speed (in rps) = (number of pulses/390) / T in seconds

This is typically how one can measure the motor speed by polling – continuously
checking in a tight loop whether something has happened or not.

Here there are TWO polling operation happening. The first if-statement checks to
see if the Hall Effort signal has a rising edge (goes from low to hight). The second if-
statement checks for a time window of 100msec. By counting the number of pulses
detected in 100ms window, we can calculate the speed of the motor using the
formula:

motor_speed (in rps) = number of pulses/39

39 because each revolution of the motor generates 390 pulses. Therefore in a
100msec period, one revolution will give us 39 pulses!

We measure the speed of rotation by counting the number of low-to-high transitions on
one of the two Hall Effect Sensor signals.
This can be achieved by polling – checking in the code when such transition has occurred. If
yes, up a counter value. Then check if 100msec has elapsed. If yes, remember the count
value and reset the counter.
Questions to ask yourself:
1. What is the purpose of these two lines?

2. How are tic and toc, which are built-in functions in Matlab, implemented in
Micropython?

3. Explain the following codes:

8

The reason why polling is not a good method to measure speed of motor is that
microprocessor can only execute ONE instruction stream at a time. If you are checking
(polling) for rising edge, you cannot do other things. Conversely if you are doing other
things, you will miss the rising edges. That’s why in the experiment, you found that the
polling method give a speed reading that is “noisy”, meaning that it is jumps all over the
place!
Interrupt is different. You use HARDWARE method to detect the occurrence of an event.
Forces the processor to suspend whatever it is doing at the time, and go to another
segment of CODE to service the interrupt (hence we call this the Interrupt Service Routine
or ISR).

When finished, return to the interrupted code and continue as before.
Question to ask yourself:
1. Why is interrupt better than polling?
2. What happens if your interrupt service routine is long and complex?
3. How should you think about a system with multiple interrupts?
4. What is it meant by “saving the state fo the program”? Why is this necessary?

9

Here are two interrupt service routines. The first to handle low-to-high transition on the
senor signal from Motor A. The second to handle timer alarm which happens every
100msec.

Question to ask yourself:
1. When will the functions isr_MotorA and isr_speed_timer be executed?
2. What are the purposes of these two functions?
3. Why you need to define A_count and A_speed as global?

10

11

How does one set up interrupts in MicroPython using the Pyboard and the Pybench
System? First you need to include the following statement to allocate memory to store the
state of the program:

Then you have to tell that hardware that pin Y4 will generate an interrupt on every rising
edge, and that the interrupt service routine is isr_motorA:

Then, you need to program Timer 4 to time out every 100msec:

Finally, you need to tell this Timer that it should generate an interrupt when time out, and
run isr_speed_timer:

Once interrupt is set up properly, the main program loop only controls the motor.
Measuring the speed of motor is done automatically.
The global variable A_speed will contain the correct number of transitions in a 100msec
window ALL THE TIME, and updated every 100msec automatically.

12

For your information and future reference, here are the pin assignment found on the
Pybench board.

13

