Imperial College
London

Lecture 12

Motor Drive, Polling and
Interrupt

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 1

In this lecture, we will go through what you have learned in Lab 4. In particular, | will
explain the limitation of polling as a method of detecting a real-time event. Then |
will explain what and why interrupt is so much better.

Finally I will explain how you can use interrupt with the Pybench board using
Micropython.

Driving a DC Motor — H-Bridge

¢ The DC motor needs four transistors to control its
speed and direction.

¢ InLab 4, we used the TB6612 chip to drive the 1 l — 0
motor with four transistors.

¢ The combination of transistors is called an H-Bridge, 1
due to the obvious shape. (See diagram.) 0 Motor 1

+ Transistors are switched diagonally to allow DC
current to flow in the motor in either direction.

¢ The transistors can be Pulse Width Modulated to
reduce the average voltage at the motor, useful for
controlling current and speed.

-

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 2

The content of this slide was presented to you last year in DE1.3 Electronics 1 module in
Lecture 14 — Drive. | present this here again to refresh your memory.

Since motor coils are essentially inductors, they have low DC impedances (resistance of the
wiring). Hence when driving motors, we need to use special driver chips.

The driver chip you will use in Lab 4 (the TB6612) is often called the H-Bridge Driver. Shown
here is the simplified block diagram. There are four transistors connected to the supply rail
and ground. (It doesn’t matter which is which because the circuit is symmetrical.) The
motor is connected in the middle forming the horizontal link of the H. The transistors are
MOSFETs (metal oxide silicon field effect transistors) which is acting like a voltage controlled
switch. When a ‘1’ or high voltage is applied to the gate control terminal, the transistor
turns ON and conduct electricity. If a ‘0’ or low voltage is applied, the transistor is OFF. So
the top diagram shows a configuration that results in the supply voltage being applied to
the left terminal of the motor. The right terminal of the motor is grounded, and the motor
turns in one direction. Reversing the control to the transistors results in the motor turning
in the other direction.

If you use an AND gate at the control input, you can also add a PWM signal to control the
speed of the motor.

Basically the ‘1’ and ‘0’ control signals are the A0 and A1 signals on the TB6612. The PWM
signal is what you apply to the input of the AND gate.

Now you know how the TB6612 works.

Pybench Board and its components

Q‘l’@

“‘Q.vv-'.
=ORLRANR S

- ¢ b2 ’ 2 1 Vi i
B &l 12V to 5V APy BLACK = GND
gee-ts- '?x ~ e] 1o o | BLuE=3av

C

L]
LI B
O Ha¥E3a¥s . u
8305 0,0
CIk OC Rst 3v3 and* Inertial e

Measurement
Organic LED
128 x 64 display . fma
] Mlcrophone& !
6 ~ Ampllﬂer i u'LLl .
J &

S 5 5
L A‘lDAUN'M

N OND S IXEZXTTX IZX0ZX BIX 81

oooooooo'

X11 X12RSTOND 3U3 ue

Unit IMU)

ARANAXS
CTSVRXI “RTS _D

QViv2 ¥2 ¥4 ¥8 Y6 v7 voixs

potentiometer

PYKC 3 Feb 2020 DEZ2.3 - Electronics 2 Lecture 12 Slide 3

Last year, you wired your motors to the TB6612 H-bridge driver chip (the one in
brown colour) yourself. This year, the wirings are all done for you on the Pybench
PCB.

You will also be connecting the Pybench board to a 12V lithium battery via the large
yellow power connectors. The toggle switch turns this ON and OFF.

The motor is connected to the Pybench board via the 6-way ribbon cable. You will
be learning how to drive the motors (again) in Lab 4 on Wednesday.

You will also be using the Bluetooth board (BluFruit UART from Adafruit) to control
the speed of the motor. Here are the pin names on the Pyboard for reference.

[micro sD slot| [USB micro-AB|

g:anme gg#.e available timers peripherals Y skin

v1 { ce [TvE] O .- {v+]
v2 || c7 Ea 50 | . [3v3]
Y3 H B8 o -Em‘ 3 RX SO < . GND
va |{ B9 e R — < o . [RsT]
Y5 H B12 55 @ Rx————0 hY @ BT It Bl H Y12
Z RS e

Y6H813 5 SkH & Xf———@ Oﬁ,‘,‘,> &E— BO H Y1l
Y7 Hala mmmmmmm—— 5 O o0 C>D = B11 H Y10
va |{ 815 L e FYe Rl 810 | Yo
X9 H B6 50" i A7 H X8
B8O ., E (a7 {8 |

x10 { B7 50 22 g = a6 || x7
ca 2 Q=5 2 &< it As H X6 |
¢ X L

X12 H C5 50 =& A4 H X5
N> S L2
[RsT] ;01! o N ED
JE0 1 (o) A2 H x3
L

[3v3] §OOOOOOOOOOO AL x2
[v+} 2100000000000 , [0 Jx1 |

X16 X17 X18 X19 X20X21 X22X23X24GND U+ I . CPU pin
veat]) peripherals available timers 20 noa

[GND |

Driving the motor with TB6612

import pyb
from pyb import Pin, Timer

Define pins to control motor

Al = Pin('X3"', Pin.OUT_PP) # Control direction of motor A
A2 = Pin('X4', Pin.OUT_PP)

PWMA = Pin('X1') # Control speed of motor A

Configure timer 2 to produce 1KHz clock for PWM control

tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

+12VL () ,PWMA X1

def A_forward(value): VCe AN "
AINL

Al. 1(?\4() TB6612 < oy X3

A2.high() Motor T +5V

motorA.pulse_width_percent(value) Driver “an2 ’g
A_forward(50) GND

PYKC 3 Feb 2020 DEZ2.3 - Electronics 2 Lecture 12 Slide 4

Exercise 1 of Lab 4 is just a revision from last year’s Electronic 1 module. If you have
forgotten this, please go back to last year’s lecture on “Drive”.

Here are some interesting questions to ask yourself to check whether you have

learned what is expected of you:

1. Why do you need this driver chip at all? Could you drive the motor directly from
the microprocessor?

2. How are the two pins (IN1 and IN2) used to control the direction of the motor?

3. What is PWM and why is it desirable to use PWM to control the speed of the
motor instead of using analogue voltage level (e.g. from a DAC signal)?

4. What is meant by “Creating a pin object A1” in the Python code?

Al = Pin('X3"', Pin.OUT_PP)

5. Explain how timer 2 is programmed to produce the PWM signal to drive motor
in the following lines.
Configure timer 2 to produce 1KHz clock for PWM control

tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

6. How should you choose the frequency of the PWM signal to drive the motor?

Controlling the speed with potentiometer

33v

x11 Pybench X1, X2, X3, X4
Pyboard X7,X$
motor control
USB to PC/Mac » Y4,Y5,Y6,Y7
— - MOTOr Sensors
pot = pyb.ADC(Pin(‘X11")) # define potentiometer object as ADC conversion on X11
value = pot.read() # value = 0 to 4095 for voltage 0Ov to 3.3v
while True: # loop forever until CTRL-C

speed = int((pot.read()-2048)%200/4096)
oled.draw_text (9,40, 'Motor Drive:{:5d}%"'.format(speed))
oled.display()
if (speed >= DEADZONE): # forward
A_forward(speed)
B_forward(speed)
elif (speed <= -DEADZONE):
A_back(abs(speed))
B_back(abs(speed))
else:
A_stop()
B_stop()

PYKC 3 Feb 2020 DEZ2.3 - Electronics 2 Lecture 12 Slide 5

Next, we use the potentiometer (5k(2) to control motor speed and direction. Here

are the questions to test yourself:

1. In Micropython, how do you create an object to perform ADC conversion? Why
in this case, we use pin X11?

2. How do you define and work out the resolution of the ADC converter?

3. Explain the meaning of the statement:

speed = int((pot.read()-2048)*200/4096)

4. Explain the meaning of the format statement in Python:

oled.draw_text (2,40, 'Motor Drive:{:5d}%'.format(speed))

Measuring Motor speed with Hall Effect Sensors

Hall effect sensors g

Circular magnet

motorA - Y4
motorB - Y6

motorA -Y6
motorB - Y7

Clockwise
Coded Output

ceear | L | OO

(sine)

owess LT

(cosine)

?0’ Offset

« Circular magnet has 13 pole pairs Anti-clockwies S
+ The gearbox of the motor has a 1:30 CodedOutput =~ |7 | " e -

gear ratio Chonnel A | | | |
* How many pulses are produced for (sine)

each revolution of the motor? —I I I I

. Channel B

* Speed of motor (in rps) can be cosingd 0ol11213'071 2130]1—TI 2'o

measured by counting the number of
pulses in a given time window (say
100msec)

Define pins for motor speed sensors
A_sense = Pin('Y4', Pin.PULL_NONE)
B_sense = Pin('Y6', Pin.PULL_NONE)

Pin.PULL_NONE = leave this as input pin

"
g

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 6

Next, we use the Hall Effect Sensors (two) on the motor to determine the speed of
the motor and direction of the motor. The questions to ask yourself are:

1. Refer to the sensor output signals, what happens when you increase the motor
speed?

2. How would the two sensor signals differ when you change the direction of
rotation in the motor?

3. Given the waveform of the two signals (Channel A and B) from the sensors, the
relative phase is always *=m/2. Why?

4. Given the circular magnet has 13 pole pairs, and that the gear of the motor has

a 1:30 reduction ratio, how can you derive the speed of motor (in revolutions
per second) from the number of rising edges E in a period T? (answer: 390
pulses per revolution. Therefore speed of motor is:

motor_speed (in rps) = (humber of pulses/390) / T in seconds

Pseudo code to measure speed by polling

« |Initialize variables to zero: motor_speed, sensor_state, pulse_count
* Repeat forever:

Mark current time (as tic)
If sensor has gone from low to high (rising edge)
increment pulse_count
Update sensor_state by reading hall effort sensor value
If elapse_time >= 100ms
motor_speed = pulse_count
reset pulse_count
display speed on OLED as motor_speed/39

Discuss: what is the limitation of polling?

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 7

This is typically how one can measure the motor speed by polling — continuously
checking in a tight loop whether something has happened or not.

Here there are TWO polling operation happening. The first if-statement checks to
see if the Hall Effort signal has a rising edge (goes from low to hight). The second if-
statement checks for a time window of 100msec. By counting the number of pulses
detected in 100ms window, we can calculate the speed of the motor using the
formula:

motor_speed (in rps) = number of pulses/39

39 because each revolution of the motor generates 390 pulses. Therefore in a
100msec period, one revolution will give us 39 pulses!

Measure motor speed by polling

¢ Polling means checking % Initialise variables
for some event in aloop, |Astate =@ # e of A sensor
. A_speed = 0 # d of motor A
then do Somethlng A_count = @ # sitive transition count
¢ Here we check sensor tic = pyb.millis(); # keep time in millisecond
signal of motgrAchanglng while True: # loop forever until CTRL-C
from low to hlgh in the # detect rising edge on sensor A
i if (A_state == @) and (A_sense.value()==1): # rising edge detected on A
polling loop A ot bm 1
¢ When this OCCuUrs, A_state = A_sense.value() # read value on pin A_sense
lncrementa counter # Check to see 1T 109 msec has elapsed
A_count toc = pyb.millis() e
if ((toc-tic) >= 100):
. We also check e!apseq e L e
time = 100msec in polling
IOOp (tiC‘tOC) # drive motor - controlled by potentiometer (as before)
+ If time out, save count as
Speed measurement A_count = 0@ # reset transition count
A_speed, and reset # Display new speed
counter oled.draw_text(0,20, 'Motor A:{:5.2f} rps'.format(A_speed/39))
oled.display()
tic = pyb.millis() <mmmm

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 8

We measure the speed of rotation by counting the number of low-to-high transitions on
one of the two Hall Effect Sensor signals.

This can be achieved by polling — checking in the code when such transition has occurred. If
yes, up a counter value. Then check if 100msec has elapsed. If yes, remember the count
value and reset the counter.

Questions to ask yourself:
1. What is the purpose of these two lines?

if (A_state == @) and (A_sense.value()==1): # rising edge detect
A_count += 1
A_state = A_sense.value() # read value on pin A_sense

2. How are tic and toc, which are built-in functions in Matlab, implemented in
Micropython?

3. Explain the following codes:

% Check to see 1T 100 msec Nnas elapsed
toc = pyb.millis() [3) ¢ummm
if ((toc-tic) >= 100):

A_speed = A_count

Lab 4: The idea of interrupt

Interrupt occurs

“ while in instruction 4

Instruction

Instruction 1
Inst
Sl 2 1. Save the state of program
Instruction 3 2. Jump to ISR
- 3. Stop further interrupts
Instruction 4 | 4. When finish return
I,
Instruction 5 M
Instruction 6
"~ Instruction 7 1 ¢ Hardware method to detect event (e.g. rising edge on a pin),
generate interrupt
¢ Processor forced to do something else — defined in the
Interrupt Service Routine (ISR)
¢ Return when finished
PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 9

The reason why polling is not a good method to measure speed of motor is that
microprocessor can only execute ONE instruction stream at a time. If you are checking
(polling) for rising edge, you cannot do other things. Conversely if you are doing other
things, you will miss the rising edges. That’s why in the experiment, you found that the
polling method give a speed reading that is “noisy”, meaning that it is jumps all over the
place!

Interrupt is different. You use HARDWARE method to detect the occurrence of an event.
Forces the processor to suspend whatever it is doing at the time, and go to another

segment of CODE to service the interrupt (hence we call this the Interrupt Service Routine
or ISR).

When finished, return to the interrupted code and continue as before.
Question to ask yourself:

1. Whyis interrupt better than polling?

2. What happens if your interrupt service routine is long and complex?
3. How should you think about a system with multiple interrupts?
4

What is it meant by “saving the state fo the program”? Why is this necessary?

Lab 4: Interrupt Service Routines

+ Need to detect and handle two types of events:
1. Rising edge on Hall effect sensor signal on Y4
2. 100ms elapsed time on a Timer

+ Need two ISRs for these two interrupt events

+ Need to provide a dummy variable as shown here

b Section to set up Interrupts

def isr_motorA(dummy): # motor sensor ISR - just count transitions
global A_count
A_count += 1

def isr_speed_timer(dummy): # timer interrupt at 10@0msec intervals
global A_count
global A_speed

A_speed = A_count # remember count value
A_count = 0 # reset the count
PYKC 3 Feb 2020 DEZ2.3 - Electronics 2 Lecture 12 Slide 10

Here are two interrupt service routines. The first to handle low-to-high transition on the
senor signal from Motor A. The second to handle timer alarm which happens every
100msec.

Question to ask yourself:

1. When will the functions isr_MotorA and isr_speed_timer be executed?
2. What are the purposes of these two functions?

3. Why you need to define A_count and A_speed as global?

10

Lab 4: setting up the interrupts

+ Allocate some buffer space to handle errors
+ Specify Pin Y4 as source of interrupt, rising edge
+ Define timer 4 as a 100msec period timer (10Hz)
+ timer.callback (ISR) - tell timer to generate an interrupt at end of period, and
execute ISR
Create external interrupys for motorA Hall Effect Senor f

import micropython
micropython.alloc_emergency_exception_buf(100)
from pyb import ExtInt

motorA_int = ExtInt ('Y4', |ExtInt.IRQ_RISING, Pin.PULL_NONE, isr_motorA)

Create timer interrupts 3t 100 msec intervals
speed_timer = pyb.Timer(a,"freq=10)
speed_timer.callback(isr_speed_timer)

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 11

How does one set up interrupts in MicroPython using the Pyboard and the Pybench
System? First you need to include the following statement to allocate memory to store the
state of the program:

micropython.alloc_emergency_exception_buf(100)

Then you have to tell that hardware that pin Y4 will generate an interrupt on every rising
edge, and that the interrupt service routine is isr_motorA:

motorA_int = ExtInt ('Y4', ExtInt.IRQ_RISING, Pin.PULL_NONE,isr_motorA)

Then, you need to program Timer 4 to time out every 100msec:
speed_timer = pyb.Timer(4, freq=10)

Finally, you need to tell this Timer that it should generate an interrupt when time out, and
run isr_speed_timer:

speed_timer.callback(isr_speed_timer)

11

Lab 4 — Interrupt MAGIC

while True: # loop forever until CTRL

dri e ool i notantioastes
speed = int((pot.read()-2048)%200/4096)
if (speed >= DEADZONE): # forward
A_forward(speed)
B_forward(speed)
elif (speed <= -DEADZONE):
A_back(abs(speed))
B_back(abs(speed))
else:
A_stop()
B_stop()

vé mo1

Wheel rotating at 1 rps

will produce 39 rising
edges in 0.1 sec

\

)1S1 I New
1 v I

oled.draw_text(0,20, 'Motor A:{:5.2f} rps'.format(A_gzeed/Bg))

oled.display(

¢ Program loop does not deal with motor sensor edge, not 100msec elapse time

¢ A_speed will always contain instantaneous speed count

PYKC 3 Feb 2020 DE2.3 - Electronics 2

Lecture 12 Slide 12

Once interrupt is set up properly, the main program loop only controls the motor.

Measuring the speed of motor is done automatically.

The global variable A_speed will contain the correct number of transitions in a 100msec

window ALL THE TIME, and updated every 100msec automatically.

12

Pin Assignments for Pybench

PIN
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12

FUNCTION
Motor PWM_A/Servo 1
Motor PWM_B/Servo 2
Motor control AIN1/Servo 3
Motor control AIN2/Servo 4
Analogue OUTPUT
SWO0
Motor control BIN1
Motor control BIN2
IMU-12C SCL
IMU-I12C SDA
POT5K
Analogue INPUT

PIN
Y1l
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9

Y10

Y11

Y12

FUNCTION
BLE-UART Tx
BLE-UAR Rx
Swi1
Motor sensor A_A
Motor sensor A_B
Motor sensor B_A
Motor sensor B_B
OLED-i2C RST
OLED-I2C SCL
OLED-12C SDA
Microphone amplifier
Unused

PYKC 3 Feb 2020

DE2.3 - Electronics 2

Lecture 12 Slide 13

For your information and future reference, here are the pin assignment found on the
Pybench board.

13

